Tag Archive | boulder

Why Study The Moon?

The Moon is seriously old and our objective here at Moon Zoo is to study its surface with the time and detail that cannot be afforded by a small team of scientists. Earth’s closest neighbour and only natural satellite represents the largest and brightest object in the sky second to the Sun, and plays a crucial physical role to life here on Earth. But as the only other body to have been walked upon by man, what do we actually know about the Moon? Why is it so important to continue to study? And what can Moon Zoo’s 47,000 participants do to help?

One of the main focusses at Moon Zoo is to examine the distribution of craters in various regions in terms of their size and frequency. By determining this relationship, we can then independently estimate surface ages of different areas that have been examined by the community. Discerning these surface ages is key to understanding the history of the early Solar System, as the Moon is thought to have formed just 30-50 million years after its birth 4.5 billion years ago. The colossal impact of the Mars-sized body, Theia, into the early Earth stripped the outermost layer of our planet and returned it to a molten state, whilst the ejecta was captured in orbit and accreted to form the Moon. Although not perfect, this hypothesis explains the relatively small size of the Moon’s core and overall lower density, since it coalesced mostly from lighter crustal material. Whilst the Moon’s internal structure is differentiated into a core, mantle and crust in a similar way to the Earth’s, its rapid cooling saw tectonic and volcanic activity cease around 3.5 billion years ago. The combination of the Moon’s inactive geology and highly tenuous atmosphere has enabled its surface to become one of the most ancient, and well-preserved in the Solar System. From this almost perfectly kept record, we are not only able to look into the Moon’s past, but also unravel some of the mysteries surrounding the Earth’s history, the early Sun, and previous Solar System environments.


On Earth, tectonic, volcanic, and weathering activity has destroyed much of its early record, which is why we look to the Moon to understand our own history. We use observations of different surface features and lunar samples to date particular regions, which can help indicate events that occurred in the inner Solar System. This can, for example, be used to date periods of heavy bombardment from asteroids, which enables us to investigate the frequency of such events in Earth’s history. The samples obtained from the Moon originate from its outermost layer, known as the regolith, which is comprised of fine dust formed by impact processes. The Moon’s practically vacuous atmosphere does little to interfere with this layer, so it is able to preserve the impact fragments and provide insight into the composition and origin of colliding bodies. The regolith also incorporates particles from the solar wind, which allows us to examine how the Sun has changed over its lifetime.

Moon Zoo is helping to uncover the lunar geological evolution by analysing high-resolution images from NASA’s Lunar Reconnaissance Orbiter (LRO), in order to expand our knowledge of past impact, tectonic and volcanic activity on the Moon. Alongside crater counting, the other current primary focus is the identification of boulders, which can indicate depth of unconsolidated material. Another outcome of this search will be the production of boulder-density maps, which can be used for future lunar missions to indicate safe (or very hazardous!) landing sites.

Boulder Tracks

To date, the Moon Zoo community has already made over 3.5 million visual classifications with images from LRO, alongside many unusual geological features; the project has also been very successful in identifying spacecraft debris, rover tracks and even astronaut footprints! Data already gathered from the work of Moon Zoo participants on the Apollo 17 landing site are well on their way to producing the first comprehensive paper showing these results, which is scheduled for submission shortly. The current Apollo 12 landing site has also received a great deal of interest and will soon be drawing to a close for full analyses by the Moon Zoo science team. The next step will be analysing an entirely new data set, which will most likely delve into the rare maria on the more mysterious dark side of the Moon.


There is still a great deal more to understand about our planet’s closest relative and the clues it holds to the history of the bodies around it. Until the next stage of the project is launched, we implore you to keep clicking and help demonstrate the strong impact of citizen science on lunar research!


Ejecta Blocking Boulder

On the floor of Al-Bakri crater lies an approximately 100 foot diameter crater with a very unusual feature that may have interfered with its impact ejecta pattern.

ACT-REACT map NAC photo strip

You can see the open wedge area (no ejecta) caused from a strategically placed boulder near its rim.  Here is what Moon Zoo Team member Irene Antonenko ( IreneAnt ) has to say:

” This is really interesting because the boulder really shouldn’t affect the placement of the ejecta all that much. When the crater is being formed, ejecta is being thrown out from closer to the centre, so the boulder would be too far away to affect the ejection of material. And, when the material lands, it is thought to land from above (not sideways), so again, the boulder shouldn’t affect the emplacement of ejecta material. “

There may be some tells as one looks around the crater floor for clues that may help solve this mystery.  Our ejecta blocking boulder appears to have been sitting at that location for quite some time. There does not appear to be any boulder tracks like the one below from a boulder that probably rolled down from the rim of Al-Bakri crater south of our mystery boulder.

If you look at the other boulders in the area you will see that they appear to be white (high albedo). The ejecta blocking boulder is darker and appears to be the black sheep of the boulder community. This anomaly may be resolved if one considers that the darker color of the boulder may be due to it being covered with a dusting of fine ejecta particles from the impact.

It appears that the major force of the impact, as Irene stated above, moved up and over the boulder not affecting or having little affect on its placement. However, there does seem to be a lateral surface flow of ejecta that hit the boulder. The boulder then acted like a nozzle/guide that created the unique ejecta- free wedge design out from the crater. There is also a possibility that crater excavation moved our mystery boulder up to its present position while blocking the ejecta along the way.

The old boulder may have staked its claim to that spot first and was not willing to give it up even with the more recent arrival of a claim jumping impactor.  What are your thoughts?

Tom128 is a regular contributor on the Moon Zoo forum.