Tag Archive | LRO

Why Study The Moon?

The Moon is seriously old and our objective here at Moon Zoo is to study its surface with the time and detail that cannot be afforded by a small team of scientists. Earth’s closest neighbour and only natural satellite represents the largest and brightest object in the sky second to the Sun, and plays a crucial physical role to life here on Earth. But as the only other body to have been walked upon by man, what do we actually know about the Moon? Why is it so important to continue to study? And what can Moon Zoo’s 47,000 participants do to help?

One of the main focusses at Moon Zoo is to examine the distribution of craters in various regions in terms of their size and frequency. By determining this relationship, we can then independently estimate surface ages of different areas that have been examined by the community. Discerning these surface ages is key to understanding the history of the early Solar System, as the Moon is thought to have formed just 30-50 million years after its birth 4.5 billion years ago. The colossal impact of the Mars-sized body, Theia, into the early Earth stripped the outermost layer of our planet and returned it to a molten state, whilst the ejecta was captured in orbit and accreted to form the Moon. Although not perfect, this hypothesis explains the relatively small size of the Moon’s core and overall lower density, since it coalesced mostly from lighter crustal material. Whilst the Moon’s internal structure is differentiated into a core, mantle and crust in a similar way to the Earth’s, its rapid cooling saw tectonic and volcanic activity cease around 3.5 billion years ago. The combination of the Moon’s inactive geology and highly tenuous atmosphere has enabled its surface to become one of the most ancient, and well-preserved in the Solar System. From this almost perfectly kept record, we are not only able to look into the Moon’s past, but also unravel some of the mysteries surrounding the Earth’s history, the early Sun, and previous Solar System environments.

theia

On Earth, tectonic, volcanic, and weathering activity has destroyed much of its early record, which is why we look to the Moon to understand our own history. We use observations of different surface features and lunar samples to date particular regions, which can help indicate events that occurred in the inner Solar System. This can, for example, be used to date periods of heavy bombardment from asteroids, which enables us to investigate the frequency of such events in Earth’s history. The samples obtained from the Moon originate from its outermost layer, known as the regolith, which is comprised of fine dust formed by impact processes. The Moon’s practically vacuous atmosphere does little to interfere with this layer, so it is able to preserve the impact fragments and provide insight into the composition and origin of colliding bodies. The regolith also incorporates particles from the solar wind, which allows us to examine how the Sun has changed over its lifetime.

Moon Zoo is helping to uncover the lunar geological evolution by analysing high-resolution images from NASA’s Lunar Reconnaissance Orbiter (LRO), in order to expand our knowledge of past impact, tectonic and volcanic activity on the Moon. Alongside crater counting, the other current primary focus is the identification of boulders, which can indicate depth of unconsolidated material. Another outcome of this search will be the production of boulder-density maps, which can be used for future lunar missions to indicate safe (or very hazardous!) landing sites.

Boulder Tracks

To date, the Moon Zoo community has already made over 3.5 million visual classifications with images from LRO, alongside many unusual geological features; the project has also been very successful in identifying spacecraft debris, rover tracks and even astronaut footprints! Data already gathered from the work of Moon Zoo participants on the Apollo 17 landing site are well on their way to producing the first comprehensive paper showing these results, which is scheduled for submission shortly. The current Apollo 12 landing site has also received a great deal of interest and will soon be drawing to a close for full analyses by the Moon Zoo science team. The next step will be analysing an entirely new data set, which will most likely delve into the rare maria on the more mysterious dark side of the Moon.

moon1

There is still a great deal more to understand about our planet’s closest relative and the clues it holds to the history of the bodies around it. Until the next stage of the project is launched, we implore you to keep clicking and help demonstrate the strong impact of citizen science on lunar research!

Advertisement

The whole of the Moon

Using stunning Wide Angle Camera (WAC) images the LRO team created this timelapse movie of the rotating Moon. From Earth we don’t see the Moon rotate like this because the Earth’s gravity slowed the Moon down by constantly pulling against the rotation. Eventually, after millions of years, the Moon became tidally locked and now rotates about its axis in about the same time it takes to orbit the Earth so the same face of the Moon always points towards Earth.

Enjoy this spacecraft-eye view of the Moon.

APOD videos on You Tube

3-D Moon

The Lunar Reconnaissance Orbiter has created a WAC (Wide Angle Camera) low-Sun mosaic and turned it into this amazing anaglyph. It’s well worth a look. Dig out the red and blues and spend some time floating above the Moon. If you don’t have any 3-D glasses just follow the link in this LROC article and make yourself a pair. Click on the image to go BIG!

Ten Cool Things Seen in the First Year of LRO

The Lunar Reconnaissance Orbiter will soon have been orbiting the Moon for 4 years. Here’s a reminder of ten cool things it “saw” in its first year.
From NASA’s mission pages.

The coldest place in the solar system

Astronauts first steps on the Moon

Apollo14 and the near miss of cone crater

Lukhnod 1 found

LOLA’s Lunar farside

Craters and boulders with Moon Zoo

Moon Mountains

Lunar Rilles

Pits and skylights

Areas of Near Constant Sunlight at the South Pole

Moon Zoo Author Poster

Day 10 of the Zooniverse Advent Calendar brings us to the Moon Zoo blog with a pair of posters from two different eras – and two different perspectives.

MoonZooPosterEarthrise_800

On Christmas Eve 1968, the crew of Apollo 8 wished a Merry Christmas to the people of Earth by showing them the image of themselves, in this famous Earthrise image. Flash-forward to 2010, and now, thanks to NASA’s Lunar Reconnaissance Project (LRO) and the Moon Zoo project, the people of Earth can see the Moon just as clearly as the 1968 crew that orbited it.

When it came to producing the Moon Zoo edition of our author posters series, it was hard to pick the most appropriate image – 1968 or 2010 – so instead we made both! Two posters, created from the 36,000+ names of the people who gave permission to be published.

MoonZooPosterLRO_800

Download large LRO poster (27 MB) or small (14 MB). Download large Earthrise poster (27 MB) or small (14 MB).

Welcome to Moon Zoo

Moon Zoo launch has arrived! After over a year of planning, discussing and debating, Moon Zoo is finally being launched today. It is an exciting time for all the people who have been working hard on the project: from the geologists and planetary scientists who helped to conceive the scientific rationale behind the tasks, to the computer whizzes and Galaxy Zoo gurus who have made the whole thing possible.

We would especially like to thank all those at NASA, Goddard Space Flight Center and Arizona State University who planned, designed, built, calibrated and operated the Lunar Reconnaissance Orbiter Camera (LROC) and LRO mission. We are using LROC images that have been archived through the Planetary Data System. We are incredibly grateful that NASA and the LROC team is willing to share these images with the rest of the world so that we can all enjoy looking at the surface of our nearest neighbour. If you would like to know more about the LROC camera I suggest taking at look at their great website and more information about the LRO mission itself can be seen at here.

So, down to it. Why should you spend your time working hard on Moon Zoo tasks? Well there are several pages on this site that will help to explain the science behind Moon Zoo in more detail, but in short we hope that Moon Zoo data will provide new insights into the geological history of the Moon from volcanic eruptions to asteroid impact events. Studying LROC images of the lunar surface provides a close up view that has never been seen before and we want to use this powerful new dataset to investigate the nature of the lunar surface. We hope to collect a database of the size and dimensions of small (less than 2 km) lunar craters that will be helpful not only to understanding impact cratering processes on the Moon, but also that can help studying the history of impact bombardment throughout the inner Solar System from Mars, to Mercury and even here on Earth.

We want you to spot lunar geological features that we think are really interesting – from billion-year-old volcanic vent sites to curving lava channels, to brand new impact craters that might have formed in the last forty years. You can see examples of these types of things on the Moon Zoo tutorial page. We also want you to help find out which parts of the Moon are covered with boulders so that we can develop hazard maps that could be used by future spacecraft and human exploration missions to plan the best and worst sites to land on the lunar surface! There are a lot of things to do in Moon Zoo and we have more planned for the future. Most of all – just have fun looking at the amazing diversity of the lunar surface – I certainly have not got bored of looking through these images and hope that you are as equally excited to explore our Moon.

Hope that you enjoy helping out with the investigation and please do leave comments here on the blog, and on the Moon Zoo Forum if you have any feedback, suggestions or questions.